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Blood cell counting is an important medical test to help medical sta®s diagnose various symptoms
and diseases. An automatic segmentation of complex overlapping erythrocytes based on seed
prediction in microscopic imaging is proposed. The four main innovations of this research are as
follows: (1) Regions of erythrocytes extracted rapidly and accurately based on the G component.
(2) K-means algorithm is applied on edge detection of overlapping erythrocytes. (3) Traces of
erythrocytes' biconcave shape are utilized to predict erythrocyte's position in overlapping clus-
ters. (4) A new automatic counting method which aims at complex overlapping erythrocytes is
presented. The experimental results show that the proposed method is e±cient and accurate with
very little running time. The average accuracy of the proposed method reaches 97.0%.
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1. Introduction

Erythrocytes (also referred toRedBloodCells, RBCs)
are a crucial kind of blood cells in human blood due to
theirmain devotions to blood gas transport, especially
oxygen. RBCs are muchmore common than the other
blood particles: White Blood Cells (WBCs) and
thrombocytes (platelets, PLTs). For a healthy adult,
about 2:5� 1011 new RBCs are released from
the bone marrow into the blood circulation per day.
Such a large amount leads to a high RBC component

proportion of 97% in the blood and its mass density is
equal to about 4:5�6:2� 106/mm3 in men.1 Mature
RBCs are nonnucleated, biconcave disc-shaped cells
of 7–8�m in diameter, 2�m-thick with an average
volume of 80–100�m3.2 RBC counting is one of the
most commonly performed medical tests as it plays a
vital role in the diagnosis of various diseases.3 Path-
ological alterations in RBC have been associated with
various diseases4 such as malaria,5 sickle cell anemia,
diabetes,6 hereditary disorders7 and so on.8
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Traditional counting process, when performed
manually, has been proved to be tedious, time
consuming and subjective. Some automatic and
accurate mechanisms are invented to cope with the
aforementioned problems such as automatic °ow
cytometry.9 Various automatic, computer-aided
blood cell counting techniques have been proposed
in recent decades.10–16 A large number of experi-
ments show that most of the existed methods are
untenable with a low precision in the case of cells
overlapping together (also called clustering, some
cells clustering together and forming into a big area)
which often appears in actual blood smear images.
To optimize this shortcoming, an automatic seg-
mentation of complex overlapping RBCs based on
seed prediction is presented. In this method, after
regions of erythrocytes extracted rapidly and accu-
rately based on the G component of original images,
traces of erythrocytes' biconcave shape are utilized
as seeds to predict erythrocyte's position in over-
lapping clusters. Besides, K-means algorithm is
applied on internal edge detection of overlapping
erythrocytes.

2. Related Works

Segmentation of the RBCs in a microscopic blood
smear image is a potential research problem due to
their medical signi¯cances. Researchers have been
putting serious e®orts for this purpose. Grishagin10

presented a complete solution for automatic cell
counting in which a conventional light microscope is
equipped with a web camera to obtain images of a
suspension of mammalian cells in a hemocytometer
assembly. Based on the ImageJ toolbox, we devised
two algorithms to automatically count these cells.
On this basis of Thomasset's11 level set, Lu12 pre-
sented an improved algorithm for the segmentation
of cytoplasm and nuclei from clumps of overlapping
cervical cells by utilizing a joint optimization of
multiple level set functions. Saima et al.13 presented
a parametrized segmentation algorithm called cap-
ture largest included circles (CLIC) that captures
largest possible circles in an object boundary. Ge
et al.14 counted RBCs by extracting regional max-
ima of overlapping erythrocytes and de¯ned a dis-
tance-dependent rule to eliminate those spurious
maxima. An adaptive marker-controlled watershed
approach, aimed at improving the automatic ex-
traction of markers was proposed by Tonti et al.15 It

takes advantage of domain-speci¯c knowledge
about the textural and geometrical characteristics
of cells to reduce the sensitivity to uneven illumi-
nation and over-segmentation errors. Genctav
et al.16 segmented overlapping cells by ranking the
cells based on their feature characteristics computed
from the nuclei and cytoplasm regions. The ranking
was generated via linearization of the leaves of a
binary tree that was constructed using hierarchical
clustering.

3. Proposed Complete RBCs Counting
Method

3.1. Pre-processing

RGB color space is commonly used to describe color
space of images.17 Figure 1(a) is a typical cell color
image and Fig. 1(b) shows the G component in
RGB color space of this image. It can be easily
found from Fig. 1(b) that there lies distinct di®er-
ence between background and cells. The gray value
of background is higher than that of the cells as
shown in Fig. 1(c). While applying Otsu's method18

to the G component, a gray value threshold T0 is
acquired self-adaptively. By doing image binariza-
tion through T0 on Fig. 1(b), every cell can be ¯g-
ured out from background rapidly and accurately as
shown in Fig. 1(d). After analyzing further, gray
value in nucleus regions in G component are obvi-
ously lower than that of other regions as shown in
Fig. 1(e). So a binary image which only contains
nucleated parts through an empirical value T1 will
reveal itself as shown in Fig. 1(f).

By image binarization onFig. 1(b).With the guide
of Fig. 1(f), regions of the nucleated cells can be wiped
o® from Fig. 1(d) as shown in Fig. 1(g) in which
WBCs and PLTs are no longer existed but some
noises, whose area is much smaller than the cell size,
may invade due to the blemish on blood slides. By
small area ¯ltering, the binary image only contains
RBCs is extracted successfully as shown in Fig. 1(h).
Figure 2 shows the °owchart of the pre-processing.

Sequential steps of pre-processing are as follows:

Step1. Splitting theG component of the input image
and extracting a self-adaptive T0 by Otsu's
method on G component; Image binarization
of the G component with T0; Hole-¯lling the
binary image by morphological operations
(see Fig. 1(d)).
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Step2. Image binarization of the G component
with T1 (see Fig. 1(f)).

Step3. Reading the ¯rst pixel of each individual
nucleus region in Fig. 1(f) and storing their
coordinates; Wiping o® closed regions who
conations these coordinates in the Fig. 1(d).

Step4. Deleting regions whose area is too much
small.

3.2. RBCs classi¯cation

Due to RBCs' large amount and high density in
blood, distribution of RBCs is complex and varied

in blood smear images. In principle, RBCs can be
classi¯ed into two classes: individual RBCs and
overlapped RBCs as shown in Figs. 3(a) and 3(b)).
Much more attention should be paid to the di®erent
shape characteristic between these two classes. It
has been corroborated by repeated experiments that
while taking count of RBCs with a well-worked
method for individual RBCs, the accuracy of over-
lapped ones is too low to meet the application de-
mand; on the other hand, while employing a
complex algorithm which fares well in overlapping
clusters, over-segmentation always occurs on indi-
vidual RBCs and also these algorithms consume

(a) Individual erythrocyte (b) Overlapping erythrocytes
cluster

(c) Individual ones (d) Overlapping erythrocytes
cluster

Fig. 3. Classi¯cation of erythrocytes.

(a) Original blood
smear image

(b) G component image (c) Gray level distribution
of G component

(d) Binarization

(e) R, G and B component
of Nucleated

(f) Regions of nuclei (g) RBCs with noises (h) RBCs only

Fig. 1. Image pre-processing.

Read All the cells 
detection

Detect regions of 
WBCs and PLTs

Step1 Step2 Step4
RBCs Noise 

elimination

Step3

Fig. 2. The °owchart of pre-processing.
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much more time. In purpose of enhancing the pre-
cision, it is necessary to classify individual ones and
overlapping clusters into di®erent classes, respec-
tively before taking count.

8249 erythrocytes in 100 blood images with
1027�768 sizes at 100� were used to analyze the mor-
phological characters of individuals and overlapping
ones. Notice that the area sizes of the two classes are
obviously di®erent: area sizes of overlapping clusters
are at least 1.48 times of individual RBCs. Individual
RBCs contain 5275 pixels on average while 7858 in
overlapping clusters. Another conspicuous di®erence
between individual RBCs and clusters is the circularity
index calculated using the following formula:

CI ¼ 4�
A

P 2
; ð1Þ

where CI, P , and A represent the circularity index,
perimeter, and area, respectively. This results in a
range of CI values between 0 and 1, with a CI of 1
indicating a perfect circle.19 RBCs can be classi¯ed
into two classes: individual RBCs and overlapping
clusters, via both the two parameters mentioned
above. Regions who meet both the following two
measures would be judged as suspected overlapping
clusters: (1) area is larger than the average size of
individual RBCs TA; (2) circularity index is smaller
than the average CI of individual RBCs TCI . It is
inescapable that a minority of individual RBCs
whose area and circularity are both close to the
thresholds and be classi¯ed into overlapping class,
they were called suspected ones. Actually, only 43
individual ones in the 100 images were misclassi¯ed.
Results of classi¯cation are shown in Figs. 3(c)
and 3(d). Figure 4 shows the °owchart of the RBCs
classi¯cation algorithm.

3.3. RBC segmentation

Di®erent classes of RBCs will be counted, respec-
tively. The number of individual RBCs Ni, can be
calculated by setting a counter in the circulation in
Fig. 4. In order to overcome the limitations due to
the complex overlapping groups' incomplete shape
and ambiguous edges, an algorithm based on K-
means, seed location and seed prediction is proposed.

3.3.1. Pixel clustering

By using the binary image Fig. 3(d) as a rectangular
window function, the overlapping groups in the G

component can be extracted from Fig. 1(b) as
shown in Fig. 5(a). When applying K-means cluster
algorithm20–22 on Fig. 5(a), pixels would be ranged
into K clusters. Pixels belong to the same cluster
have the same gray value, thus the edge will be
much more distinct to be detected. Notice that
background's gray value is 0 and a healthy human
being's RBCs are biconcave shape structure, so the
RBCs' sunken parts have higher gray value than
other regions as shown in Fig. 5(b). It is reasonable
to cluster pixels into three clusters by setting the
parameter K to 3 in the K-means algorithm. Fig-
ures 5(c) and 5(e) shows the details.

3.3.2. Edge detection and restoring

Canny edge detection algorithm is a classical and
robust method for edge detection in gray-scale ima-
ges.23 It looks like a doughnut due to the biconcave
shape of RBC, so the peripheral of the cell is called
external edge while the internal edge corresponding
to the trace of biconcave region (see Fig. 5(e)). After
edge detection with canny edge detection method,24

details of the internal edges of every RBC in
the overlapping groups emerged to be legible (see
Figs. 5(d) and 5(h)). However, some internal edges
are not closed and these edges cannot help to locate a
seed of RBCs accurately, so restoring of these edges is
indispensable before the next manipulation. When
the distance between two edges is closer than 5 length
units (set one pixel as 1 length unit), these two lines
will be deemed as di®erent parts of one RBC's

Start

Initialize i=n
n(number of closed regions)

Calculate area 
and CI

i > n ?
Yes

End

No

Region delete

Yes

i=i+1

Yes

Area >TA ?
No

CI <TCI ?
No

Fig. 4. The °owchart of the classify algorithm.
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internal edge and then be linked. Another prepon-
derance of restoring internal edges is that some ex-
iguous incorrect edges as shown in Fig. 5(d) will be
isolated and wiped o® due to these incorrect edges
cannot be linked as a part of internal edges. A perfect
edge will come out after edge restoring as shown in
Fig. 5(f). Restoring e®ect is obvious via the contrast
between Figs. 5(h) and 5(i).

3.3.3. Prediction and segmentation

Internal edges and RBCs are one-for-one corre-
sponding. Each centroid of internal edges can be
used as a seed to predict the location of a corre-
sponding RBC. A ¯tting circle on the basis of each
internal edge can be used to simulate a corre-
sponding RBC. With the centroids and circles, the
original overlapping situation in the clusters will be
predicted as close as possible (see Fig. 6(a)). As a
matter of fact, these simulated circles cannot re°ect
overlapping clusters objectively and exactly because

the radiuses are modulated by internal edges, which
are smaller than RBCs' actual sizes. So a further
step should be taken to improve seed prediction.
Considering that the shape of an individual RBC is
very close to a circle and the average radius of RBCs
Rp can be calculated from individual RBCs, so we
can draw ¯ctitious circles with each seed and Rp,
respectively as seed prediction (see Fig. 6(b)). By
taking an intersection for Figs. 3(d) and 6(b), a
more realistic prediction of clusters will exhibit as
shown in Fig. 6(c). It is worth mentioning that some
few RBCs would be missed in the edge detection
due to their inconspicuous internal edge. Detection
of these dropped ones will accomplish by subtract-
ing Figs. 3(d) and 6(c) as shown in Fig. 6(d).

3.4. RBC counting

According to the above discussion, the number of
overlapping RBCs contains the number of seeds Ns

and the number of close regions in Fig. 6(d)Nc.

(a) Location of erythrocytes (b) Seed prediction (c) Detection of clustered
erythrocytes

(d) Dropped erythrocytes

Fig. 6. Processing of overlapping clusters (2).

(a) G component
of clusters

a

b

(b) Clustered by
K-means

(c) Details of region a

Incorrect 
edge

(d) Edge of region a

External 
edge

Internal
edge

External 
edge

Internal
edge

(e) Details of region b

a

b

(f) Internal edge of
each RBC

(g) Internal edges
in region a

(h) Edge of region b (i) Internal edge in
region b

Fig. 5. Processing of overlapping cluster (1).
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Hence, the total number of RBCs NR in the smear
microscope image can be expressed as follows:

NR ¼ Ni þNs þNc; ð2Þ
Figure 7 shows the °owchart of the counting
process.

This part of algorithm to complete RBC count-
ing can be described step by step as follows:

Step1. Applying binary image Fig. 3(d) on the G
component of original image Fig. 1(b) as a
rectangular window function (see Fig. 5(a)).

Step2. Clustering with K-mean where K is set as 3
(see Fig. 5(b)).

Step3. Edge detection with canny edge detector
(see Figs. 5(d) and 5(h)).

Step4. Internal edges restoring (see Figs. 5(g)
and 5(i)).

Step5. Calculating centroids on the basis of in-
ternal edges; Calculating average radius Rp

on the basis of individual RBCs; Drawing
simulated circles (see Fig. 6(b))

Step6. `IMAGE INTERSECTION' between
Figs. 3(d) and 6(b). `IMAGE COMPLE-
MENT' between Figs. 3(d) and 6(c).

Step7. Summation of Ni, Ns and Nc.

4. Experiments and Result Analysis

Lots of microscopic images with 1024�768 sizes were
used to test and verify the universality and ro-
bustness of this proposed method. All the test
images with 1027�768 sizes were captured by a
CCD camera at 100� and they were on-the-spot
sampler collected from Sichuan Provincial People's
Hospital. A dataset consist of 100 test images was
divided into 10 sets and the experimental results are
shown in Table 1 to prove the performance of this
proposed method. MT and MO represent manual
counting result of total RBCs and manual counting
result of overlapping RBCs by a hematologist, re-
spectively. NT is this proposed method's counting
result of total RBCs in the image while the data NO

represents the counting result of overlapping
clusters.

Three representative samples (i, ii and iii) were
chosen to analyze the experimental results as shown
in Fig. 8. Experiments in di®erent cases obtained
good results and the experiment results are shown
in Table 2.

Precision and accuracy: Although the average
precision reaches 97%, the weakness of this method
should not be neglected: to a certain degree, the
precision declines with the increase of the amount of
RBC. In some excessive overlapping situation, few
RBCs' internal edges were impossible to be detected
and they would also be covered during the seed
prediction. This leads to a certain imperfection.

Parameter selection: In pre-processing, T1 was
not adaptive. It was set to 100 via a large amount of
experiments. In classi¯cation, TA and TCI are cal-
culated on the basis of individual RBCs. Also,
RBCs' average radius Rp in seed prediction can be
calculated.

Restrictions: As long as RBCs are biconcave
shape, their internal edges can be obtained. Even
irregularly shaped RBCs can be captured by the
proposed method. Unfortunately, this proposed
method cannot do well in taking count of hypotonic

Separation of overlapping
Classification

Step Step2 Step3

Fitting RBCs
Separation of
internal 

Step4

Step5Step6Detection of 
dropped erythrocytes

Step7
Counting

Cluster with
K-means

Edge detection
clusters in G component

Fig. 7. The °owchart of counting.

Table 1. Experiment results of the dataset.

Total Overlapping
Acc of

Total (%)
Acc of

Clusters (%)Set MT NT MO NO

1 674 674 197 197 100 100
2 785 784 217 216 99.9 99.5
3 738 721 251 234 97.7 93.2
4 876 847 288 259 96.7 89.9
5 901 871 326 296 96.7 90.8
6 955 916 352 313 95.9 88.9
7 693 693 225 225 100 100
8 774 769 259 254 99.4 98.1
9 837 792 316 271 94.6 85.8
10 1016 938 374 296 92.3 79.1
Total 8249 8005 2805 2561 97.0 91.3
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or hypertonic cases RBCs, due to their smooth
surface.

Runtime: Using nonoptimized computer program
code on standard 2.GHz CPU, the average running
time of this method was 31.04 s/image.

A comparison with other methods dealing with
the above three representative images and the
dataset is shown in Table 3.

Fig. 8. Three representative experimental results.

Table 2. Cells counting using proposed algorithm.

Total Overlapping
Acc of

Total (%)
Acc of

Clusters (%)Image MT NT MO NO

i 68 68 25 25 100 100
ii 73 73 14 14 100 100
iii 85 78 32 25 91.8 78.1
Average 96.9 90.1

Table 3. Comparison with other algorithms.

i ii iii Dataset
Ave Acc of
total (%)

Ave Acc of
clusters (%)Image/Method MT/NT MO/NO MT/NT MO/NO MT/NT MO/NO MT/NT MO/NO

Grishagin's method 68/56 25/14 73/66 14/7 85/64 32/11 8249/6788 2805/1266 82.3 45.1
Ge's approach 68/52 25/19 73/69 14/10 85/74 32/21 8249/7111 2805/1975 86.2 70.4
CLIC 68/58 25/15 73/66 14/7 85/63 32/10 8249/6823 2805/1265 82.7 45.1
Proposed 68/68 25/25 73/73 14/14 85/78 32/25 8249/8005 2805/2561 97.0 90.1

Automatic counting method for complex overlapping erythrocytes
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Comparing with the existing algorithms, the ac-
curacy of total counting results increases 10% to
15% and the accuracy of clusters counting results
rises almost 20% to 35%. Results reveal that the
proposed scheme method outperforms traditional
image segmentation algorithms by less calculation,
less time-consumption and higher validity. It is ev-
ident that one of the major advantages of this new
measure of RBCs counting is that it can detect
overlapping clusters e±ciently, which is reliable in
improving the counting precision.

5. Conclusions

There is an increasing need for expanding the ap-
plication of complete RBC counting method based
on microscope smear blood image in computer
background in medical domain. Signi¯cant progress
has been made in blood cells counting in a re-
markably short period of time. This study reveals
the following three main ¯ndings: Firstly, regions of
erythrocytes can be extracted rapidly and accu-
rately from the smear image based on the G com-
ponent. Secondly, an automatic segmentation of
complex overlapping RBCs is proposed. Thirdly, a
complete RBC counting method is presented. The
experimental results have proven the superiority of
this proposed scheme especially in case of complex
overlapping RBC clusters. But there lies a reduction
of the accuracy while RBCs in the smear image have
no conspicuous internal edges. In future, adaptive
threshold may be introduced to increase the accu-
racy and e®ectiveness of this approach.

Acknowledgments

This work was supported by the 863 National
Plan Foundation of China under Grant No.
2007AA01Z333 and Special Grand National Project
of China under Grant No. 2009ZX02204-008.

References

1. M. Thiriet, Tissue Functioning and Remodeling in
the Circulatory and Ventilatory Systems, Biomath-
ematical and biomechanical modeling of the circu-
latory and ventilatory systems 5, pp. 53–175 (2013).

2. J. Picot, P. A. Ndour, \A biomimetic micro°uidic
chip to study the circulation and mechanical reten-
tion of red blood cells in the spleen,"Am. J. Hematol.
90(4), 339–345 (2015).

3. http://www.nlm.nih.gov/medlineplus/ency/article/
003644.htm (site last visited on July 30, 2015).

4. S. Shattil, B. Furie, H. Cohen, L. Silverstein, P. Glave,
M. Strauss, Hematology: Basic Principles and Prac-
tice, Churchill Livingstone, Philadelphia, (2000).

5. T. Wu, J. J. Feng, \Simulation of malaria-infected
red blood cells in micro°uidic channels: Passage and
blockage," Biomicro°uidics 7(4), 044115 (2013).

6. A. V. Buys, E. Pretorius, \Changes in red blood cell
membrane structure in type 2 diabetes: A scanning
electron and atomic force microscopy study," Car-
diovasc. Diabetol. 12, 25 (2013).

7. L. Da Costa, J. Galimand, O. Fenneteau, N.
Mohandas, \Hereditary spherocytosis, elliptocytosis,
and other red cell membrane disorders," Blood Rev.
27(4), 167–178 (2013).

8. G. Tomaiuolo, \Biomechanical properties of red
blood cells in health and disease towards micro-
°uidics," Biomicro°uidics 8, 051501 (2014).

9. Y. H. Lin, G. B. Lee, \Optically induced °ow cyto-
metry for continuous microparticle counting and
sorting," Biosens. Bioelectron. 24, 572–578 (2008).

10. I. V. Grishagin, \Automatic cell counting with
image," J. Anal. Biochem. 473, 63–65 (2015).

11. A. Dervieux, F. Thomasset, \A ¯nite element
method for the simulation of Rayleigh-Taylor
instability," Lec. Notes Math. 771, 145–158 (1980).

12. Z. Lu, \An improved joint optimization of multiple
level set functions for the segmentation of over-
lapping cervical cells," IEEE Trans. Image Process.
24(4) 1261–1272 (2015).

13. S. Rathore, A. Iftikhar, A. Ali, M. Hussain, A. Jalil,
\Capture largest included Circles: An approach for
counting red blood cells," IMTIC 2012, CCIS 281,
373–384 (2012).

14. J. Ge, Z. Gong, Y. Sun, \A system for counting fetal
and maternal red blood cells," IEEE Trans.
Biomed. Eng. 61(12) 2823–2829 (2014).

15. S. Tonti, S. Cataldo, A. Bottino, E. Ficarra, An
automated approach to the segmentation of HEp-2
cells for the indirect immuno°uorescence ANA test,
Comput. Med. Imag. Graph. 40, 62–69 (2015).

16. A. Genctava, S. Aksoy, S. Onderb, \Unsupervised
segmentation and classi¯cation of cervical cell
images," Pattern Recognit. 45, 4151–4168 (2012).

17. Y. Yang, Y. Cao, W. Shi, \A method of leukocyte
segmentation based on S component and B compo-
nent images," J. Innov. Opt. Health Sci. 7(1)
1450007: 1–8 (2014).

18. N. Otsu, \A threshold selection method from gray
level histograms," IEEE Trans. Syst. Man Cybe. 9(1)
62–66 (1979).

19. S. Nakano, T. Nakano, \Change in circularity index
of cell lumen in a cross-section of wood induced by
aqueous NaOH," J. Wood Sci. 60, 99–104 (2014).

X. Wei & Y. Cao

1650016-8

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
6.

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

03
.2

40
.1

26
.9

 o
n 

10
/2

1/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



20. L. Galluccio, \Graph based k-means clustering,"
Signal Process. 92, 1970–1984 (2012).

21. D. MacKay, Chapter 20. An Example Inference
Task: Clustering, Information Theory, Inference
and Learning Algorithms, pp. 284–292. (Cambridge
University Press, UK, 2012).

22. M. Mahajan, P. Nimbhorkar \The planar k-means
problem is NP-hard," Lect. Notes Comput. Sci.
5431, 274–285 (2009).

23. R. Biswas, J. Sil, \An improved canny edge detec-
tion algorithm based on type-2 fuzzy sets," Procedia
Technol. 4, 820–824 (2012).

24. H. Zhang, J. Jackman, \Feasibility of automatic
detection of surface cracks in wind turbine blades,"
Wind Eng. 38(6) 575–586 (2014).

Automatic counting method for complex overlapping erythrocytes

1650016-9

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
6.

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

03
.2

40
.1

26
.9

 o
n 

10
/2

1/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


	Automatic counting method for complex overlapping erythrocytes based on seed prediction in microscopic imaging
	1. Introduction
	2. Related Works
	3. Proposed Complete RBCs Counting Method
	3.1. Pre-processing
	3.2. RBCs classification
	3.3. RBC segmentation
	3.3.1. Pixel clustering
	3.3.2. Edge detection and restoring
	3.3.3. Prediction and segmentation

	3.4. RBC counting

	4. Experiments and Result Analysis
	5. Conclusions
	Acknowledgments
	References


